首页> 外文OA文献 >Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory
【2h】

Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory

机译:大型零和游戏的简单策略及其应用   复杂性理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Von Neumann's Min-Max Theorem guarantees that each player of a zero-summatrix game has an optimal mixed strategy. This paper gives an elementary proofthat each player has a near-optimal mixed strategy that chooses uniformly atrandom from a multiset of pure strategies of size logarithmic in the number ofpure strategies available to the opponent. For exponentially large games, for which even representing an optimal mixedstrategy can require exponential space, it follows that there are near-optimal,linear-size strategies. These strategies are easy to play and serve as smallwitnesses to the approximate value of the game. As a corollary, it follows that every language has small ``hard'' multisetsof inputs certifying that small circuits can't decide the language. Forexample, if SAT does not have polynomial-size circuits, then, for each n and c,there is a set of n^(O(c)) Boolean formulae of size n such that no circuit ofsize n^c (or algorithm running in time n^c) classifies more than two-thirds ofthe formulae succesfully.
机译:冯·诺依曼的最小-最大定理可确保零和矩阵游戏的每个玩家都有最佳的混合策略。本文提供了一个基本的证明,即每个玩家都有一个接近最优的混合策略,该策略从对数大小的对数纯策略中选择均匀的随机数作为对手可用的纯策略数量。对于指数级大型游戏,即使要表现出最佳的混合策略也可能需要指数空间,因此可以得出近似最优的线性策略。这些策略易于玩耍,并且可以作为近似游戏价值的见证。因此,每种语言都有少量的``硬''输入多集,证明小型电路无法决定该语言。例如,如果SAT没有多项式大小的电路,则对于每个n和c,都有一组大小为n的n ^(O(c))个布尔公式,因此没有大小为n ^ c的电路(或运行的算法)在时间上,n ^ c)成功地对超过三分之二的公式进行了分类。

著录项

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号